Defining numbers in some of the Harary graphs
نویسندگان
چکیده
In a given graph G = (V , E), a set of vertices S with an assignment of colors to them is said to be a defining set of the vertex coloring ofG if there exists a unique extension of the colors of S to a c ≥ χ(G) coloring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number. In this note, we study the chromatic number, the defining number and the strong defining number in some of the Harary graphs. © 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Toughness of the Networks with Maximum Connectivity
The stability of a communication network composed of processing nodes and communication links is of prime importance to network designers. As the network begins losing links or nodes, eventually there is a loss in its effectiveness. Thus, communication networks must be constructed to be as stable as possible, not only with respect to the initial disruption, but also with respect to the possible...
متن کاملNordhaus-Gaddum type results for the Harary index of graphs
The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...
متن کاملChromatic Numbers in Some Graphs
Let G = (V,E) be a graph. A k-coloring of a graph G is a labeling f : V (G) → T , where | T |= k and it is proper if the adjacent vertices have different labels. A graph is k-colorable if it has a proper k-coloring. The chromatic number χ(G) is the least k such that G is k-colorable. Here we study chromatic numbers in some kinds of Harary graphs. Mathematics Subject Classification: 05C15
متن کاملShields-harary Numbers of Graphs with Respect to Continuous Concave Cost Functions
The Shields-Harary numbers are a class of graph parameters thatmeasure a certain kind of robustness of a graph, thought of as a network of fortified reservoirs, with reference to a given cost function. We prove a result about the Shields-Harary numbers with respect to concave continuous cost functions which will simplify the calculation of these numbers for certain classes of graphs, including ...
متن کاملA survey of some open questions in reconstruction numbers
Frank Harary contributed numerous questions to a variety of topics in graph theory. One of his favourite topics was the Reconstruction Problem which, in its first issue in 1977, the Journal of Graph Theory described as the major unsolved problem in the field. Together with Plantholt, Frank Harary initiated the study of reconstruction numbers of graphs. We shall here present a survey of some of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 22 شماره
صفحات -
تاریخ انتشار 2009